Members Can Post Anonymously On This Site
NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind
-
Similar Topics
-
By NASA
Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
Visiting Mars on the Way to the Outer Solar System
Written by Roger Wiens, Principal Investigator, SuperCam instrument / Co-Investigator, SHERLOC instrument at Purdue University
A portion of the “Sally’s Cove” outcrop where the Perseverance rover has been exploring. The radiating lines in the rock on the left of the image may indicate that it is a shatter cone, showing the effects of the shock wave from a nearby large impact. The image was taken by Mastcam-Z’s left camera on March 21, 2025 (Sol 1452, or Martian day 1,452 of the Mars 2020 mission) at the local mean solar time of 12:13:44. Mastcam-Z is a pair of cameras located high on the rover’s mast. This image was voted by the public as “Image of the week.” NASA/JPL-Caltech/ASU Recently Mars has had a few Earthly visitors. On March 1, NASA’s Europa Clipper flew within 550 miles (884 kilometers) of the Red Planet’s surface on its way out to Jupiter. On March 12, the European Space Agency’s Hera spacecraft flew within about 3,100 miles (5,000 kilometers) of Mars, and only 300 kilometers from its moon, Deimos. Hera is on its way to study the binary asteroid Didymos and its moon Dimorphos. Next year, in May 2026, NASA’s Psyche mission is scheduled to buzz the Red Planet on its way to the metal-rich asteroid 16 Psyche, coming within a few thousand kilometers.
Why all these visits to Mars? You might at first think that they’re using Mars as an object of opportunity for their cameras, and you would be partially right. But Mars has more to give these missions than that. The main reason for these flybys is the extra speed that Mars’ velocity around the Sun can give them. The idea that visiting a planet can speed up a spacecraft is not all that obvious, because the same gravity that attracts the spacecraft on its way towards the planet will exert a backwards force as the spacecraft leaves the planet.
The key is in the direction that it approaches and leaves the planet. If the spacecraft leaves Mars heading in the direction that Mars is traveling around the Sun, it will gain speed in that direction, slingshotting it farther into the outer solar system. A spacecraft can typically gain several percent of its speed by performing such a slingshot flyby. The closer it gets to the planet, the bigger the effect. However, no mission wants to be slowed by the upper atmosphere, so several hundred kilometers is the closest that a mission should go. And the proximity to the planet is also affected by the exact direction the spacecraft needs to go when it leaves Mars.
Clipper’s Mars flyby was a slight exception, slowing down the craft — by about 1.2 miles per second (2 kilometers per second) — to steer it toward Earth for a second gravity assist in December 2026. That will push the spacecraft the rest of the way to Jupiter, for its 2030 arrival.
While observing Mars is not the main reason for their visits, many of the visiting spacecraft take the opportunity to use their cameras either to perform calibrations or to study the Red Planet and its moons.
During Clipper’s flyby over sols 1431-1432, Mastcam-Z was directed to watch the skies for signs of the interplanetary visitor. Clipper’s relatively large solar panels could have reflected enough sunlight for it to be seen in the Mars night sky, much as we can see satellites overhead from Earth. Unfortunately, the spacecraft entered the shadow of Mars just before it came into potential view above the horizon from Perseverance’s vantage point, so the sighting did not happen. But it was worth a try.
Meanwhile, back on the ground, Perseverance is performing something of a cliff-hanger. “Sally’s Cove” is a relatively steep rock outcrop in the outer portion of Jezero crater’s rim just north of “Broom Hill.” Perseverance made an approach during March 19-23, and has been exploring some dark-colored rocks along this outcrop, leaving the spherules behind for the moment. Who knows what Perseverance will find next?
Share
Details
Last Updated Mar 28, 2025 Related Terms
Blogs Explore More
2 min read Sols 4493-4494: Just Looking Around
Article
4 hours ago
2 min read Sols 4491-4492: Classic Field Geology Pose
Article
2 days ago
3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)
Article
4 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
NASA Men stand in front of turning vanes inside the Altitude Wind Tunnel (AWT) at the National Advisory Committee for Aeronautics Aircraft Engine Research Laboratory in this February 1944 publicity photo. The photo was taken just weeks after the tunnel became operational.
The AWT was the only wind tunnel capable of testing full-size aircraft engines in simulated altitude conditions. A large wooden drive fan, located on the other side of these vanes, created wind speeds up to 500 miles per hour. Each corner of the rectangular tunnel had turning vanes, which straightened the airflow and directed it around the corners. This set of vanes was in the 31-foot-diameter southeast corner of the tunnel. These elliptical panels consisted of 36 to 42 vertical vanes that were supported by three horizontal supports. The individual vanes were 2.5 feet long and half-moon shaped. Each set of vanes took weeks to assemble before they were installed during the summer of 1943.
The Aircraft Engine Research Laboratory went through several name updates and changes through NACA and NASA history; it is now NASA’s Glenn Research Center in Cleveland.
Image credit: NASA
View the full article
-
By European Space Agency
Video: 00:00:43 Aside from sunlight, the Sun sends out a gusty stream of particles called the solar wind. The ESA-led Solar Orbiter mission is the first to capture on camera this wind flying out from the Sun in a twisting, whirling motion. The solar wind particles spiral outwards as if caught in a cyclone that extends millions of kilometres from the Sun.
Solar wind rains down on Earth's atmosphere constantly, but the intensity of this rain depends on solar activity. More than just a space phenomenon, solar wind can disrupt our telecommunication and navigation systems.
Solar Orbiter is on a mission to uncover the origin of the solar wind. It uses six imaging instruments to watch the Sun from closer than any spacecraft before, complemented by in situ instruments to measure the solar wind that flows past the spacecraft.
This video was recorded by the spacecraft's Metis instrument between 12:18 and 20:17 CEST on 12 October 2022. Metis is a coronagraph: it blocks the direct light coming from the Sun's surface to be able to see the much fainter light scattering from charged gas in its outer atmosphere, the corona.
Metis is currently the only instrument able to see the solar wind's twisting dance. No other imaging instrument can see – with a high enough resolution in both space and time – the Sun's inner corona where this dance takes place. (Soon, however, the coronagraph of ESA's Proba-3 mission might be able to see it too!)
The research paper that features this data, ‘Metis observations of Alfvénic outflows driven by interchange reconnection in a pseudostreamer’ by Paolo Romano et al. was published today in The Astrophysical Journal.
Solar Orbiter is a space mission of international collaboration between ESA and NASA, operated by ESA.
[Technical details: The starting image of the video shows the full view of Solar Orbiter's Metis coronagraph in red, with an image from the spacecraft's Extreme Ultraviolet Imager in the centre (yellow). Zooming to the top left of this view, we see a video derived from Metis observations. The vertical edge of the video spans 1 274 000 km, or 1.83 solar radii. The contrast in the Metis video has been enhanced by using a ‘running difference’ technique: the brightness of each pixel is given by the average pixel brightness of three subsequent frames, minus the average pixel brightness of the three preceding frames. This processing makes background stars appear as horizontal half-dark, half-light lines. Diagonal bright streaks and flashes are caused by light scattering from dust particles close to the coronagraph.]
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.